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Free energy landscape of a dense hard-sphere system
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The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by
a discretized free energy functional of the Ramakrishnan-Yussouff form is investigated numerically using a
specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free
energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space
‘‘distance’’ between different minima. We find evidence for the existence of pairs of closely related glassy
minima ~‘‘two-level systems’’!. We also investigate the way the system makes transitions as it moves from the
basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This
allows us to determine the effective height of free energy barriers that separate a glassy minimum from the
others. The dependence of the height of free energy barriers on the density is investigated in detail. The general
appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by
a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our
observations to other work on the glass transition.@S1063-651X~99!00903-4#

PACS number~s!: 64.70.Pf, 64.60.Ak, 64.60.Cn
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I. INTRODUCTION

When a liquid is cooled to temperatures below the eq
librium freezing temperature at a sufficiently fast rate to p
vent crystallization, it enters a metastable supercooled s
As the temperature is lowered further, the supercooled liq
undergoes a glass transition to a state in which it behave
most ways like a disordered solid. The dynamic behavior
supercooled liquids near the glass transition exhibits m
peculiar features@1–3#, such as multistage, nonexponent
decay of fluctuations and a rapid growth of relaxation tim
which are not fully understood theoretically.

An intuitively appealing description that is often use
@4,5# for qualitative explanations of the observed behav
near the glass transition is based on the so-called ‘‘free
ergy landscape’’ paradigm. The starting point of this desc
tion is a free energy functional that expresses the free en
of a liquid as a functional of the time-averaged local num
density. At high temperatures~or at low densities in system
such as those consisting of hard spheres, where the dens
the control parameter!, this free energy functional is believe
to have only one minimum that represents the uniform liq
state. As the temperature is decreased to values nea
equilibrium crystallization temperature~or mutatis mutandi
the density is increased!, a new minimum representing th
crystalline solid, characterized by a periodic modulation
the local density, should also develop. In the ‘‘free ene
landscape’’ paradigm, it is assumed that a large numbe
‘‘glassy’’ local minima of the free energy, characterized
inhomogeneous but aperiodic density distributions, a
come into existence at temperatures close to the equilibr

*Also at the Condensed Matter Theory Unit, Jawaharlal Ne
Center for Advanced Scientific Research, Bangalore 560064, In
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crystallization temperature. If the system gets trapped in
of these glassy local minima as it is cooled rapidly from
high temperature, crystallization does not occur and the s
sequent dynamics of the system is governed by therm
activated transitions among a subset of the large numbe
metastable glassy minima. If the system visits a large nu
ber of these minima during its evolution over a relative
long observation time, it behaves like a liquid over such tim
scales, in the sense that the time-averaged local density
mains uniform. However, the dynamic behavior in this r
gime, being governed by thermally activated transitions o
free energy barriers of varying height, is expected to be s
and complex. In this picture, the glass transition occurs w
the time scale of transitions among the glassy minima
comes so long that the system remains confined in a si
‘‘valley’’ of the landscape over experimentally accessib
time scales.

The general features of the free energy landscape pos
in this picture would be quite similar to those found in an
lytic studies@6–8# of certain generalized spin glass mode
with infinite-range interactions, and also in recent stud
@9,10# of spin models with complicated infinite-range inte
actions, but no quenched disorder. The equilibrium a
dynamic behavior of these mean-field models exhibit a st
ing similarity with the phenomenology of the glass tran
tion. These results suggest that the free energy lands
paradigm may indeed provide a fitting framework for t
development of a theoretical understanding of the beha
of supercooled liquids near the glass transition. The deve
ment of such a description would obviously require detai
information about the topography of the free energy lan
scape of dense supercooled liquids. Since the analytic m
ods used in the aforementioned studies of mean-field mo
with infinite-range interactions cannot be readily generaliz
to study physical systems with short-range interactions,
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vestigations of the properties of the free energy landscap
simple glass-forming liquids require the use of appropri
numerical methods.

We have carried out a number of numerical studies aim
at elucidating the relation between the dynamic behavio
simple model liquids and the structure of the free ene
surface in phase space. These studies, carried out for a d
hard-sphere system, are based on a model free energy
tional proposed by Ramakrishnan and Yussouff~RY! @11#. A
discretized version of this free energy functional was fou
@12,13# to exhibit a large number of glassy local minima
densities close to or higher than the value at which equi
rium crystallization occurs.@The control parameter for a
hard-sphere system is the dimensionless densityn* [r0s3,
wherer0 is the average number density in the fluid pha
and s is the hard-sphere diameter; increasing~decreasing!
n* has the same effect as decreasing~increasing! the tem-
perature of systems for which the temperature is the rele
control parameter.# From numerical studies@14–16# of a set
of Langevin equations appropriate for this system, we fou
that the nature of the dynamics changes qualitatively a
‘‘crossover’’ density nearnx* 50.95. The dynamics of a sys
tem initially prepared in the uniform liquid state continues
be governed by small fluctuations near the uniform liqu
minimum of the free energy as long as the density is low
than this crossover value. For values ofn* higher than the
crossover density, the dynamic behavior is governed by t
sitions among the glassy minima. The time scales for s
transitions were estimated from a standard Monte Ca
~MC! method in Ref.@17# and found to increase rapidly wit
increasing density.

In this paper, we present the results of a numerical st
in which a new approach is used for further investigations
the properties of the free energy landscape of a dense h
sphere system. This study is based on the discretized
energy functional@11# used in our previous work. The deve
opment of an understanding of the dynamics of the system
the regime where it is governed by transitions among
glassy minima of the free energy requires information ab
properties of the free energy landscape such as the numb
glassy minima, the distribution of their free energies a
overlaps, the heights of the saddle points that connect dif
ent glassy minima, and how the system evolves from
minimum to another through these saddle points. One
needs to determine the dependence of these quantities o
average density which, as mentioned above, is the rele
control parameter for the hard-sphere system. In the pre
study, we have developed and used a MC procedure to
tain quantitative information about some of these feature
the free energy landscape. As described in Sec. II below,
MC procedure enables us to study in detail the proces
transition between different glassy minima of the free ene
and thus provides valuable information about the topogra
of the free energy surface in phase space. We have
located a large number of glassy minima of the free ene
in the course of this study. This gives us useful informat
about some of the relevant statistical properties of the col
tion of glassy minima and the dependence of these prope
on the density. The main results obtained from this study
summarized below.

By performing a study of the probability of transitio
of
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from a particular glassy minimum to any other as a funct
of the free energy increment~the excess free energy me
sured from that at the original minimum!, we find that the
value of the free energy at which transitions to other mini
begin to occur with a high probability is nearly the same
different glassy minima. This suggests that the free ene
surface in phase space has a ‘‘putting green like’’ topog
phy in which the glassy minima are like ‘‘holes’’ of varyin
depth embedded in a relatively flat background. The to
number of glassy minima is a sensitive function of the d
cretization scale and the sample size. For ‘‘commensura
~as defined below! values of these quantities, which allo
the existence of a crystalline minimum~which, when
present, is the global minimum of the free energy at h
densities!, the number of glassy minima is relatively larg
Systems with incommensurate values of the discretiza
scale and the sample size exhibit no crystalline minimum
a substantially smaller number of glassy minima. For t
reason, we have carried out all our studies of the statist
properties of glassy minima for a commensurate system.
find that the total number of glassy minima for such a syst
remains nearly constant as the density is varied in the ra
0.94<n* <1.06. The free energies of the glassy minima a
distributed over a wide range between the free energy of
uniform liquid and that of the crystalline solid. The width o
this range increases as the density is increased. This ob
vation, together with the result that the number of minima
nearly independent of the density, implies that the numbe
minima per unit interval of the free energy~the ‘‘density of
states’’ of glassy minima! decreases with increasing densit
A suitably defined ‘‘phase space distance’’ between two d
ferent glassy minima also shows a broad distribution. O
study shows the existence of pairs of glassy minima t
differ from each other in the rearrangement of a very sm
number of particles. The height of the free energy barrier t
separates two minima belonging to such a pair is found to
quite small. Such pairs may be identified as ‘‘two-level sy
tems’’ which are believed@18# to exist in all glassy systems
The qualitative features of the free energy landscape foun
our study are similar to those of the generalized spin gl
models mentioned above. However, some of the details
our results~such as the form of the distribution of the overla
between different glassy minima! appear to be different from
the predictions of spin-glass-like theories.

Our study of the probability of transition from a particula
glassy minimum to the others as a function of the free ene
increment and the MC ‘‘time’’t allows us to define an ef
fective barrier height that depends rather weakly ont. Some
of our results for the dependence of this barrier height on
density have been briefly reported@19# in a recent paper. As
described there, we found that the growth of this effect
barrier height with increasing density is consistent with
Vogel-Fulcher form@20# appropriate for a hard-sphere sy
tem @21#. From our numerical results about how the depe
dence of the effective barrier height ont changes as the
density is increased, we were able to conclude that
growth of the barrier height~and the consequent growth o
the relaxation time! is primarily due to entropic effects aris
ing from an increase in the difficulty of finding low-free
energy paths~saddle points! that connect one glassy loca
minimum with the others. Some of the details not included
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Ref. @19# are provided in the present paper. We also rel
the new results described above with the conclusions rea
in Ref. @19#.

The rest of this paper is organized as follows. In Sec.
we define the model system studied and describe the num
cal methods used. Section III contains a detailed descrip
of the results obtained in our study. Finally, in Sec. IV, w
summarize the main conclusions and discuss them in
context of other related work on the glass transition.

II. MODEL AND METHODS

In this section we define the model free energy used
our study, and define the MC method that we have develo
as a means of studying the topography of the free ene
surface of the model in phase space. We also discuss in d
the initial conditions and parameters used.

A. Free energy

As explained in the Introduction, our system is charact
ized by a free energy functionalF@r# which is of the follow-
ing form @11#:

F@r#5Fl~r0!1kBTF E dr$r~r !ln„r~r !/r0…2dr~r !%

2~1/2!E drE dr 8C~ ur2r 8u!dr~r !dr~r 8!G , ~1!

where Fl(r0) is the free energy of the uniform liquid a
densityr0 , anddr(r )[r(r )2r0 is the deviation of the den
sity r at pointr from r0 . We take our zero of the free energ
at the uniform liquid value; i.e., we setFl(r0) equal to zero.
In Eq. ~1!, T is the temperature and the functionC(r ) the
direct pair correlation function@22# of the uniform liquid at
densityr0 , which we express in terms of the dimensionle
densityn* [r0s3 by making use of the Percus-Yevick@22#
approximation. This approximation is known to be quite a
curate if the value ofr0 is not very high, and should b
adequate for all the densities (n* <1.06) considered in this
study. It is well known@22# that the direct pair correlation
function of simple model liquids characterized by an isot
pic, short-range pair potential with a strongly repulsive co
~such as the Lennard-Jones liquid! is very similar to that of
the hard-sphere system at high densities. Therefore, we
pect the results obtained from this study to apply, at le
qualitatively, to other dense model liquids.

To perform the numerical calculations, we discretize o
system by introducing a three-dimensional cubic lattice
sizeL3 and mesh constanth in which a discrete set of vari
ables,r i , i 51,L3, are defined asr i[r(r i)h

3, wherer(r i)
is the density at mesh pointi . It is often convenient, in per
forming and describing the calculations, to deal with a
mensionless, normalized free energy per particlef @r# de-
fined as

f @r#5bF@r#/N, ~2!

whereN5r0(Lh)35n* L3a3 is the total number of particle
in the simulation box,b[1/(kBT), anda is the ratioh/s.
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B. The Monte Carlo method

Our main objective in this work is to find an efficient wa
to investigate the topography of the free energy landscap
the hard-sphere system described by the discretized form
the free energy functional defined in Eq.~1!. Basically, what
one would like to do is to start the system in a known fr
energy state~e.g., a glassy local minimum of the free e
ergy!, and then investigate the topography of the free ene
surface near the starting point by allowing the system
evolve in time and finding out which configurations it su
sequently visits and where it ends up. A conventional M
tropolis algorithm MC procedure, as performed at lower de
sities in our previous work@17#, is not the most efficient way
of doing this: From a computational point of view, a certa
amount of computer time is spent at every step of a conv
tional MC simulation in evaluating the exponential of th
free energy change. More important, in a conventional M
simulation carried out at the rather high densities we w
consider here, it would take a very long time for the syst
to move out of the basin of attraction of the minimum
which it is initially placed. This makes a conventional M
study of the process of transitions among free energy min
prohibitively expensive in the density range we consider.

In order to overcome these difficulties of a standard M
simulation, we have devised another MC procedure that g
erates a random sampling of configurations for which
total free energyF defined in Eq.~1! is constrained to be
lower than a specified value. This procedure works as
lows: we choose a trial value of what we call the free ene
increment, which we denote byDF or, alternatively, byD f
if we are dealing with the dimensionless version of Eq.~2!.
Then, starting with initial conditions which, as discussed b
low, correspond to a configuration where the free energy i
a local minimum, we sweep the lattice sitesi sequentially. At
each step and site, we pick another sitej at random from
among the ones that lie within a distances from the sitei .
We then attempt to change the values ofr i and r j to p(r i
1r j ) and (12p)(r i1r j ), where p is a random number
distributed uniformly in@0,1#. The attempted change is ac
cepted, and this is the crucial point, if and only if the fr
energy after the change is less thanFmax[F01DF whereF0
is the initial value, that is, the value of the free energy at
minimum where we start the computation. The simulati
proceeds up to a maximum ‘‘time’’tm measured in MC steps
per site~MCS!.

In implementing this procedure, the key point is that w
perform a sweep over a range of values ofDF, with the
same initial conditions. The objective here is to find t
value ofDF at which the system begins to exhibit transitio
to the basins of attraction of other local minima. To find o
which basin of attraction the system is in at a certain timet,
we save the configurations~i.e., the values of the variable
r i! at suitable, relatively frequent, time intervalsDt. These
configurations are then used as the inputs in a minimiza
procedure@12# that determines which basin of attraction th
system is in. The entire procedure, that is, running the sim
lation up to a certain timetm for a set of values ofDF,
saving the configurations at intervalsDt, and analyzing
them, is repeated a certain number of times~typically 10–15!
and averaged over. This yields values of the probabi
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P(D f ,t) that at timet the system has moved to the basin
attraction of a free energy minimum distinct from the one
which it was started. We define@19# a ‘‘critical’’ value D f c
of the free energy increment as the value ofD f for which the
transition probability reaches the value 0.5. As an illustrat
of our numerical procedure, we show in Fig. 1 the results
the transition probabilityP(D f ,t) as a function of the free
energy incrementD f for a minimum obtained for a sampl
with L515 atn* 50.99. The data for three different value
of t are shown, and the corresponding estimated value
D f c are indicated in the figure.

We have carried out the numerical procedure outlin
above at a number of densities in the range 0.94<n*
<1.06. We did not consider densities lower than 0.94
cause our earlier work@15,16# has shown that the dynamic
of the system is governed by transitions among glassy lo
minima only at higher densities. Since, as mentioned abo
the Percus-Yevick approximation used for the direct corre
tion functionC(r ) appearing in Eq.~1! becomes less accu
rate at relatively high densities@22#, values ofn* .1.06 were
not considered.

C. Initial states and system parameters

Our computations were performed for two different s
of the two computational system parameters—the sam
sizeL and the mesh sizeh. In one case we took these tw
parameters to be commensurate with a close-packed la
and in the other incommensurate. This was done chiefly
order to study the dependence of the structure of the
energy landscape on the commensurability properties of
computational system parameters, as well as on their va
We also considered two different kinds of initial condition
so that we could investigate the topography of the free
ergy surface in different regions of phase space. The com
tationally more intensive part of our simulations was carr
out for systems of sizeL515 with periodic boundary condi
tions and mesh sizeh5s/4.6. These values ofL ands are
incommensurate with a close-packed lattice, and as a re
no crystalline minimum was found for these samples. T

FIG. 1. Example of the determination of the ‘‘critical’’ valu
D f c , defined as the value of the free energy incrementD f at which
the transition probabilityP is 1/2. The solid circles mark the inter
sections of the plots with the lineP50.5 ~see text for a complete
discussion!. The data shown are for a sample of sizeL515.
f

n
r

of

d

-

al
e,
-

s
le

ice
in
e

he
s.

,
n-
u-
d

ult
o

kinds of initial conditions were used for such systems. T
first kind is the same as that used in Ref.@17#. These are
configurations obtained by first allowing the system
evolve from a uniform initial state under Langevin dynami
@14,15# until its free energy~which, we recall, includes a
current-dependent term in the Langevin model! reaches zero
~indicating the departure of the system from the basin
attraction of the uniform liquid minimum of the free energy!,
and then using the minimization procedure to reach the m
mum whose basin of attraction the system is in at that po
That minimum configuration is then the starting point of t
present work. All the minima found this way exhibit glass
structure, as determined by the form of the two-point cor
lation function~see below! of the local density variablesr i .
At higher densities, where the Langevin computation is
appropriate, the minima found at lower densities were sca
up by running the minimization program at the higher de
sity using the lower-density configuration~which, of course,
is not a minimum at the higher density! as the starting point.

The other portion of the computations was performed
systems withL512 andh50.25s. These values are com
mensurate with a close-packed~fcc! structure, so that a crys
talline minimum is found at sufficiently high densities. Sta
ing configurations used for simulations carried out for su
samples were obtained by using the minimization proced
discussed above on randomly inhomogeneous initial c
figurations. Out of several glassy minima found this way,
selected a few with structures similar to that of the minim
used in simulations of theL515 sample. Because of th
smaller size of these samples, we were able to explore m
extensively several aspects of the problem under consi
ation.

Our computations for theL515 sample were carried ou
for a time rangetm515 000 MCS. Computations for the sys
tem with L512 were usually carried out totm
58000 MCS. In both cases the density range 0.94<n*
<1.06 was covered. For the larger size and longer maxim
time, an intervalDt55000 MCS was used, while a close
spacing,Dt52000 MCS, was chosen forL512.

The structure of a local minimum of the free energy m
be characterized by the two-point correlation functiong(r )
of the frozen local density variablesr i at the minimum. This
function is defined as

g~r !5(
i . j

r ir j f i j ~r !Y Frav
2 (

i . j
f i j ~r !G , ~3!

where rav[( ir i /L3 is the average value of ther i at the
minimum ~values ofrav vary from one glassy minimum to
another, but are always slightly higher thanr0h3, the value
of r i at the uniform liquid minimum!, and f i j (r )51 if the
separation between mesh pointsi and j lies betweenr and
r 1Dr ~Dr is a suitably chosen bin size!, and f i j (r )50 oth-
erwise. In Fig. 2, we have shown the pair correlation fun
tions for two typical minima used as initial states in o
simulations. From the structure ofg(r ) shown in this figure,
it is clear that both these minima are glassy. It is also app
ent that the structure of theL512 minimum is quite similar
to that of theL515 one. Other minima used in our simula
tions have a similar structure.
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III. RESULTS

In this section, we describe in detail the numerical resu
obtained from our study, and present our analysis of the
merical data.

A. Monte Carlo dynamics

First, we discuss the qualitative behavior of the system
it evolves in ‘‘time’’ under our MC ‘‘dynamics’’ from the
initial state att50 to t5tm as described in Sec. II B. Durin
the evolution of the system, we monitor the dimensionl
free energybF and the maximum and minimum values
the discretized density variablesr i , i 51,L3. The maximum
value is useful for detecting possible transitions to the nei
borhood of the uniform liquid minimum. If the system fluc
tuates near one of the inhomogeneous minima of the
energy, then the maximum value ofr i would be much higher
than the value~close tor0h3! it would have if the system
were in the vicinity of the uniform liquid minimum. We find
that the system does not move to the neighborhood of
liquid minimum for the values ofDF considered here. The
total free energy is found to remain nearly constant at a va
slightly lower than the maximum allowed value,Fmax5F0
1DF.

In some of the runs, we have also monitored at frequ
time intervals a quantityd(t) that measures the ‘‘phase
space distance’’ of the system point at timet from the start-
ing point att50. This quantity is defined as

d2~ t !5(
i

@r i~ t !2r i~0!#2, ~4!

where r i(0) are the values of the density variables at
minimum from where the simulation is started. By monito
ing the time dependence of this quantity, we obtain use
information about how the system explores the free ene
landscape as it evolves in time. We find that if the value
the free energy incrementDF is small enough so that th
system remains confined in the basin of attraction of
original minimum over the duration of the simulation, the
the phase space distanced(t) saturates~or continues to in-
crease very slowly! after a rapid initial increase. The value

FIG. 2. The density correlation functiong(r ), as defined in Eq.
~3!, plotted as a function of distance~in hard-sphere units! for two
typical initial configurations. Note the glassy character of the c
relations for both lattice sizes.
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which d(t) levels off increases asDF is increased. For val-
ues ofDF that are sufficiently large for the system to be ab
to move to the basins of attraction of other minima, the tra
sitions to other basins of attraction are usually~but not al-
ways! indicated by sudden increases in the value ofd(t).
Typical results for the time dependence ofd2(t) for three
different values ofDF are shown in Fig. 3. The data show
were obtained for aL512 system atn* 51.02. For D f
51.0 andD f 51.4, the system was found to remain in th
basin of attraction of the initial minimum during the tim
scale ~8000 MCS! of the simulation. In the run withD f
51.9, the system was found to have moved to the basin
attraction of a different minimum att52000 MCS. It moved
to the basin of attraction of the crystalline minimum betwe
times t52000 MCS andt54000 MCS, and stayed there fo
the remaining part of the run. While any signature of the fi
transition from the initial minimum to the intermediate one
not clearly visible in the time dependence ofd(t) @possibly
due to the overlap of any such signature with the initial ra
increase ofd(t)#, the subsequent transition to the crystalli
minimum is clearly indicated by a rapid rise~and eventual
saturation! of d(t).

As mentioned in Sec. II B, the determination of the pro
ability of transition as a function ofD f requires repeating
our numerical procedure a number of times for a fixed se
values ofD f . We find that the minima to which the syste
moves for values ofD f close to or higher thanD f c are, in
general, different for different runs. This is more obvious f
L512 samples which, as discussed below, exhibit a lar
number of distinct glassy minima. This observation sugge
that D f c represents a measure of the free energy increm
for which a relatively large region of phase space becom
accessible to the system. Another observation that supp
this interpretation is that the system almost never return
the basin of attraction of the initial minimum after making
transition to the basin of attraction of a different one: af
having left the initial minimum, the system cannot find i
way back. In a few runs, we found transitions at relative
small values ofD f which arealwaysto the basin of attrac-
tion of the same minimum. In most of these cases, the n
minimum was found to be very ‘‘close’’ in phase spa
@as measured by the quantity defined in Eq.~4!# to the initial

-

FIG. 3. The quantityd2(t), which characterizes the ‘‘phase
space distance’’ between two points@see Eq.~4!#, plotted as a func-
tion of Monte Carlo time for three values of the free energy inc
ment. The regions of sharp changes in the curves are discuss
the text.
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one. These are examples of so-called ‘‘two-level system
discussed in more detail in the next subsection. In a
cases, we found that the new minimum to which all the tr
sitions occur at low values ofD f is not close to the initial
one. These are examples of ‘‘special’’ paths with low barr
heights which connect the initial minimum with another sp
cific minimum. Since such transitions and the ones betw
minima which are very close to each other do not corresp
to the opening up of large regions of phase space, we did
include such transitions in the calculation of the transit
probability.

Finally, we note that although our model and numeri
procedure are different from those used in most existing
merical studies of dense liquids~such studies use conven
tional MC or molecular dynamics to simulate the behavior
models defined by a microscopic Hamiltonian!, some of the
general features found in existing simulations~and also in
experiments! are reproduced in our work. We find that if th
value ofDF is such thatbFmax exceeds an upper threshol
then the system moves within a few hundred MC steps to
vicinity of the uniform liquid minimum. The value of this
upper threshold is found to be close tobF55.0. This is the
‘‘microcanonical’’ analog of the melting transition. As men
tioned above, this threshold value is not crossed in the si
lations from which the results described here were obtain
We also find that in runs withbFmax close to, but lower than
the upper threshold, the system moves to the basin of at
tion of the crystalline minimum~for L512! with a high
probability. This is nothing but the process of annealing: i
well known from experiments and simulations that crysta
zation may be induced by heating a glassy system to a t
perature close to~but lower than! its melting temperature an
then cooling it down.

B. Properties of glassy minima

In the course of our computations, we have located m
of the glassy minima of the free energy. As mention
above, for the ‘‘incommensurate’’L515 sample used in ou
work, the number of minima we have located at each den
is not large. The total number of minima found for th
sample varies in the range of 4–6, with some tendency
higher values in the lower part of then* range considered
here. The ‘‘commensurate’’L512 sample exhibits, as w
shall see below, a substantially larger number of minima,
of which is crystalline~fcc!. For this reason, we conside
chiefly the results obtained forL512, for which we can
produce significant statistics, in this subsection. A sim
sensitivity of the number of local minima to the sample s
and boundary conditions has been found in numerical stu
@23,24# of the potential energy landscape of model liqui
described by simple Hamiltonians. The reason for the re
tively strong dependence of the number of minima on
computational system parameters is not clear at present

While studying the process of transitions among
minima, we carried out a large number of minimization ru
with many different initial states. The total number of su
runs is of the order of 103 for each of the values ofn*
studied. While our procedure does not correspond to an
haustive search for all the local minima of the system,
fairly large number of initial states considered for each va
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of n* ensures that, forL512 at least, we did locate a larg
fraction of the local free energy minima of the system. So
statistical information obtained from our study can be e
pected to be representative of the full collection of loc
minima.

The total number of local minima of theL512 system
remains nearly constant as the density is varied in the ra
0.96<n* <1.06. This number is close to 25. The numbe
for different values ofn* show small variations, but there i
no clear systematic trend in the dependence of this num
on the density. In most cases, a minimum found at a part
lar density may be ‘‘followed’’ to higher or lower densitie
by using the values ofr i at the minimum at the first densit
as inputs to the minimization program at the new density
a few cases, we find that a minimum disappears as the
sity is increased or lowered, but such occurrences are r
From these observations, we conclude that the total num
of glassy minima does not exhibit any strong dependence
the density. Our limited investigation of the variation of th
free energies of the glassy minima with density suggests
the ordering of the free energies remains the same~i.e., free
energies of different minima do not cross! as the density is
changed.

The free energies of these minima are distributed in
band that lies between the free energy of the uniform liq
~which, we recall, is taken to be the zero of the free ene
scale! and that of the crystalline solid. The width of this ban
increases with increasingn* . Since the number of minima is
approximately independent of the density, this implies t
the ‘‘density of states’’ of the glassy minima decreases asn*
is increased. Specifically, letp(bF)d be the probability of
finding a glassy minimum with dimensionless free ener
betweenbF2d/2 and bF1d/2. We have calculated this
quantity from our data at different values ofn* . Represen-
tative results at two densities,n* 50.96 andn* 51.02, are
shown in Fig. 4. The values ofd used are 4.0 and 8.0 fo
n* 50.96 andn* 51.02, respectively. While the distribu
tions for the two densities are qualitatively similar, the ran
of bF over whichp(bF) is nonzero is clearly wider at the
higher density. The consequent decrease in the value
p(bF) with increasing density is also clearly seen. Both d
tributions show peaks near the upper end and tails exten
to substantially lower values. However, the lowest free

FIG. 4. The ‘‘density of states’’ for glassy free energy minim
defined as the probability of finding a glassy minimum with fr
energy in a given range~see text!. Results forL512 samples at two
densities are shown.
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ergy of the glassy minima is substantially higher than
free energy of the crystalline minimum~for the crystalline
minimum,bF52102.4 forn* 50.96 andbF52167.4 for
n* 51.02!. If the probability of finding the system in a glass
minimum is assumed to be proportional to the Boltzma
factore2bF, then only those minima with free energies lyin
near the lower end of the band would be relevant in de
mining the equilibrium and dynamic properties of the sy
tem. Our results indicate that the number of such ‘‘relevan
minima decreases with increasingn* .

In the present study, we find certain correlations betw
the free energy of a glassy minimum and its structure. Si
lar correlations were also found and described in some d
in Ref. @15#. Specifically, we find that minima with lowe
free energies have more ‘‘structure’’@as indicated by, e.g.
the heights of the first and second peaks of the correla
function g(r ) defined in Eq.~3!# and higher density than
those with lower free energies.

We have also studied how the distributions of the lo
density variables in two distinct glassy minima differ fro
one another. To do this, we need a measure of the differe
between the distributions ofr i in two glassy minima. This
measure should satisfy the requirement that it yield a z
value for the difference between two configurations if one
them can be mapped to the other by a symmetry operatio
the computational mesh. The symmetries of the cubic m
used in our computation include the 48 symmetry operati
of a simple cubic lattice and all translations, taking into a
count the periodic boundary conditions. The quant
dm(1,2) that we have used to measure the difference in
density distributions at two minima labeled ‘‘1’’ and ‘‘2’’ is
defined as follows:

dm~1,2!5
1

2
min$R%(

i
@r i

~1!2rR~ i !
~2! #2, ~5!

where r i
(1) and r i

(2) are the discretized densities at tw
minima, R represents one of the symmetry operations m
tioned above,R( i ) is the mesh point to which mesh pointi is
transformed underR, and min$R% means that theR that
minimizes the quantity on the right is to be taken. Since
variablesr i in an inhomogeneous minimum are close to o
at the mesh points corresponding to the locations of
‘‘particles’’ and close to zero at the other mesh points,
quantity dm basically measures the number of partic
whose positions are different in the two minima being co
pared. In Fig. 5, we display in histogram form the results
the distribution ofdm at two values of the density. The tw
distributions are qualitatively similar. Both are small at sm
values ofdm and exhibit peaks neardm515, which corre-
sponds to about half of the total number of particles hav
different locations in the two minima. From these results,
conclude that most of the glassy minima are rather differ
from one another. The arrangement of the particles in
glassy minima is also very different from that in a crystalli
minimum, as indicated by the observation that the value
dm almost always lies above 15 if one of the two minim
being compared is glassy and the other one is crystalline

The distributions shown in Fig. 5 extend down to valu
of dm as small as 2 or 3, indicating that there are a few pa
of glassy minima which are very similar to each other. F
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each value ofn* , we find a small number~3–5! of such
pairs of minima. To take an example, forn* 50.96, we have
found two minima, with free energiesbF5247.7 and
247.0, for which the value ofdm is 2.4. A detailed exami-
nation of the density distributions at these two minima
veals that the main difference between their structures co
from small displacements of just two particles. Of cour
these displacements also produce small changes in the v
of r i at neighboring mesh points. We believe that these p
of minima are examples of ‘‘two-level systems’’ whose e
istence in glassy materials was postulated@18# many years
ago in order to account for some of the experimentally o
served low-temperature properties. The height of the f
energy barrier that separates two members of a two-le
system is expected to be low. Our observations are consis
with this expectation. For the pair of minima mentione
above, we find that if we start the system from the minimu
with bF05247.7 and carry out our numerical procedure f
finding transitions to other minima, the system begins
show transitions to the minimum withbF05247.0 as the
value ofD f is increased above 0.7. For 0.7<D f <1.4, all the
transitions are to the other member of the two-level syste
Transitions to other minima begin to appear only for high
values ofD f . ~As noted above, we did not include transition
between the members of a two-level system in our calcu
tion of D f c .!

The degree of similarity between two different minim
may also be quantified in terms of their ‘‘overlap’’@8#. For
the discretized system considered here, the dimension
overlapq(1,2) between two minima labeled ‘‘1’’ and ‘‘2’’
may be defined in the following way:

q~1,2!5
1

ravL
3

max$R%(
i

@r i
~1!2rav#@rR~ i !

~2! 2rav#, ~6!

whererav is the average value of ther i , which is assumed to
be the same in the two minima, and max$R% means that the
R that maximizes the quantity on the right is to be take
Using the aforementioned fact that at the glassy mini
found in the density range considered here the values or i
are close to one at a small number of mesh points and c

FIG. 5. Histogram representing the fraction of pairs of free e
ergy minima found to differ in their real-space density configu
tions by an amountdm as defined in Eq.~5!. Results forL512
samples are shown at two different densities.
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3130 PRE 59CHANDAN DASGUPTA AND ORIOL T. VALLS
to zero at others, the following approximate relation betwe
q anddm may be derived easily:

q~1,2!.12dm~1,2!/N2rav, ~7!

whereN[ravL
3 is the total number of particles in the simu

lation box. The observation that the distribution ofdm has a
peak neardm5N/2 then implies that the distribution ofq
peaks near the value 0.5.

We have also looked at how the quantityFc5F0
1DFc , which measures the value of the total free energy
which transitions to other minima begin to occur with a hi
probability, varies from one minimum to another. As exe
plified by Fig. 6, where we present the results forbFc for
four minima at n* 50.96 and for three minima atn*
51.02, the value of this quantity is nearly constant for ea
value ofn* . While the values ofbF0 vary over a range of
about 15 atn* 50.96, and over a range of about 40 atn*
51.02, the calculated values ofbFc are nearly the same
~within the error bars! for the different minima at both den
sities. This observation suggests a ‘‘putting-green-like’’ fr
energy landscape in which the local minima are like ‘‘hole
of varying depth in a nearly flat background. This structu
also implies that there is a strong correlation between
depth of a minimum and the height of the barriers that se
rate it from the other minima: the barriers are higher
deeper minima.

C. Vogel-Fulcher law and entropic effects

The dependence ofD f c on n* and t was analyzed in
detail in Ref.@19#, where it was first pointed out that there
a direct connection between our results and the Vog
Fulcher law@20#. We summarize this connection here. T
basic point is that the results forD f c are consistent with the
form

D f c~n* ,t !5
a~ t !

nc* 2n*
1b, ~8!

wherea(t) is a weak function oft, b is a constant, and the
‘‘critical’’ density nc* is found to be independent oft within

FIG. 6. The valueFc of the free energy at which transitions t
other minima begin to occur with a high probability, plotted as
function ofF0 , the free energy at the starting minimum. Results
shown forL512 at two densities. One can see that, at a givenn* ,
the dependence ofFc on the starting value is quite weak.
n
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the accuracy of our results. In Fig. 7, we show the data
D f c for a L515 minimum at times 5000, 10 000, and 15 0
MCS, and also the best fits of the data to the form of Eq.~8!
with b50. The parameter values for the best fits area
50.31, nc* 51.19 for t55000; a50.30, nc* 51.22 for t
510 000;a50.27,nc* 51.23 fort515 000. The form of Eq.
~8! leads at once to the Vogel-Fulcher law appropriate fo
hard-sphere system@21# since the characteristic time shou
be proportional to the exponential ofbDFc . The values of
nc* obtained from the fits, particularly at later times, are ve
close to the random close packing density,nrcp* .1.23. This
is in agreement with the results of molecular dynamics sim
lations@21#. TheL512 data yield similar values ofnc* , but
with b.1.0.

The weak dependence ofD f c on t was also analyzed in
detail in Ref.@19# where it was found that this dependen
for all values ofn* and all the minima studied is well de
scribed by the form

D f c~n* ,t !5c~n* !t2a1D f 0 , ~9!

with a in the range 0.24–0.40, andD f 0 nearly independen
of n* . The coefficientc(n* ) was found to increase with
increasingn* . Fits of the data to the form of Eq.~9! are
shown in Fig. 2 of Ref.@19#. @This form agrees with Eq.~8!
if a(t)}t2a andc(n* )}1/(nc* 2n* ); our data are consisten
with these conditions.# This result suggests a physical inte
pretation of the observed Vogel-Fulcher behavior. The qu
tity D f 0 ~the value ofD f c in the t→` limit ! provides a
measure of~b/N times! the height of the lowest-free-energ
barriers that must be crossed in order to reach some of
other local minima of the free energy from the one und
consideration. As discussed in detail in Ref.@19#, the coeffi-
cientc(n* ) may be interpreted as a measure of the difficu
of finding low-free-energy paths to other minima. The obs
vation that c(n* ) increases withn* while D f 0 is nearly
independent ofn* then implies that the increase of the e
fective barrier height with increasingn* is primarily due to

e FIG. 7. Vogel-Fulcher fits of the data forD f c obtained for aL
515 minimum at three different values~5000, 10 000, and 15 000
MCS! of t. The solid lines are the best fits of the data to the form
Eq. ~8! with b50. The parameter values for the best fits are given
the text.
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‘‘entropic’’ effects associated with the difficulty of finding
low-lying saddle points that connect a minimum with t
others.

Therefore, a picture emerges from our work as to
origin of the Vogel-Fulcher divergence. As the syste
evolves over longer and longer times, the probability tha
will find paths to other minima involving jumps over lowe
and lower-free-energy barriers increases. At early times,
system can only explore nearby paths and must then ju
over whatever barrier is available in that region. At long
times, a wider region is explored and the chances of find
a path with a lower barrier increase. What our argum
shows is that the Vogel-Fulcher law follows from the fa
that the difficulty of finding such low-free-energy paths
other minima increases with increasingn* .

IV. SUMMARY AND DISCUSSION

We have developed and used in this work a numer
method to study the topography of the free energy surfac
a dense hard-sphere system characterized by a model
energy functional. At the relatively high densities conside
in this study, this system exhibits a complex free ene
landscape characterized by the presence of many glassy
minima. The number of accessed glassy local minima
found to depend strongly on the commensurability proper
of the discretization scaleh and the sample sizeL used. For
fixed values of these parameters, the number of minim
nearly independent of the density in the range studied. In
case whereL and h are commensurate, a crystalline min
mum is found and the number of glassy minima accesse
large enough to allow for statistical study. The free ene
values at its minima are distributed over a broadband wh
width increases with increasing density. The phase-space
tance between different minima shows a broad distribut
with a peak near the high end. However, there are a few p
of minima which are very close to each other in phase sp
and are separated by low-free-energy barriers. These, we
lieve, are examples of ‘‘two-level systems’’ which are e
pected to be present in all glassy materials. We have foun
all cases a strong correlation between the depth of a m
mum and the effective height of free energy barriers t
separate it from the other minima: deeper minima ha
higher barriers. The observed density dependence of the
fective barrier height is consistent with the Vogel-Fulch
law. Our results indicate that this Vogel-Fulcher growth
primarily due to an increase in the difficulty of finding low
free-energy paths to other minima as the density is increa

Our results have close connections with those of a num
of recent studies of the equilibrium and dynamic propert
of dense supercooled liquids. We first discuss the relatio
our observations with spin-glass-like theories@7,8,25# of the
structural glass transition. These theories are based on
similarity between the phenomenology of the structural gl
transition in so-called ‘‘fragile’’@3# liquids and the behavio
found in a class of generalized mean-field spin glass mo
@6,26# with infinite-range interactions, and also in certa
mean-field spin models with complicated multispin intera
tions but no quenched disorder@9,10#. At high temperatures
the free energy of these mean-field models, expressed
function of the single-site magnetizations, exhibits only o
e
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minimum—the ‘‘paramagnetic’’ one at which all the sit
magnetizations are zero. As the temperature is lowered
exponentially large number of nontrivial local minima com
into existence, and a ‘‘dynamic transition’’ characterized
a breaking of ergodicity occurs at a temperatureTd . At this
‘‘transition,’’ the system gets trapped in the basin of attra
tion of one of the newly developed local minima and rema
confined in this basin for all subsequent times because
free energy barriers between different local minima dive
in the thermodynamic limit in these models. This ‘‘dynam
transition’’ does not have any signature in the equilibriu
behavior of the system. A thermodynamic phase transit
occurs at a lower temperatureTc at which the configurationa
entropy associated with the exponentially large number
free energy minima becomes nonextensive.

In the suggested analogy between these models and
structural glass transition, the paramagnetic minimum of
free energy is identified with the one that represents the
form liquid, and the role of the nontrivial local minima of th
free energy is played by the glassy local minima of the liqu
free energy. The ‘‘dynamic transition’’ found atTd in the
mean-field spin models is thought to be smeared out in
uids. This is because the free energy barriers between di
ent minima are expected to remain finite in physical syste
with finite-range interactions. It has been suggested@7,8,25#
that the temperatureTd should be identified with the ‘‘idea
glass transition’’ temperature of mode-coupling theories@27#
of the dynamics of dense liquids. This temperature is s
posed to signal the onset of activated processes in the
namics. The temperatureTc is interpreted as the ‘‘Kauzman
temperature’’@28# at which the difference in entropy be
tween the supercooled liquid and the crystalline solid
trapolates to zero. The relaxation time of the supercoo
liquid is supposed to diverge at the same temperature. H
ristic arguments that suggest that this divergence is of
Vogel-Fulcher form have been proposed@8,25#. These argu-
ments are based on an entropic mechanism associated
the vanishing of the configurational entropy atTc .

The behavior found in our numerical study is in qualit
tive agreement with this scenario. We find a characteri
density~we recall once more that the density plays the r
of the temperature in the hard-sphere system we conside! at
which a large number of glassy minima of the free ene
come into existence. We do not yet know whether the nu
ber of glassy minima depends exponentially on the sam
volume—a study of this question is difficult due to the d
pendence of the number of minima on the commensurab
of h andL. While the number of glassy minima for fixedh
andL remains nearly constant as the density is increased
configurational entropy associated with these minima
creases with increasing density because the width of the b
over which the free energy of these minima is distribut
increases with density. As discussed above, we have
found evidence for a Vogel-Fulcher-type growth of rela
ation times driven by an entropic mechanism.

There are, however, a number of differences between
details of our findings and the predictions of spin-glass-l
theories. In our earlier work@15,16# on the Langevin dynam-
ics of the model system considered here, we found that
dynamic behavior is governed by activated processes if
dimensionless densityn* exceeds a crossover value,nx* , of
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3132 PRE 59CHANDAN DASGUPTA AND ORIOL T. VALLS
about 0.95. This value is substantially higher than the va
of n* ('0.8) at which the glassy minima make their fir
appearance. These two densities are expected to be clo
each other in spin-glass-like theories. Another difference
in the values of the free energy of the glassy minima rela
to that of the uniform liquid. We find that the free energy
a glassy minimum becomes lower than that of the unifo
liquid minimum as the density is increased above a va
that is only slightly higher than the density at which t
glassy minimum comes into existence. In particular, the f
energies of the glassy minima are substantially lower t
that of the uniform liquid one for values ofn* nearnx* . This
is different from the behavior found in the spin glass mode
In these systems, the free energies of the nontrivial lo
minima remain higher than that of the paramagnetic one o
the entire temperature rangeTc,T,Td . Our results for the
distribution of the overlap between different minima are a
somewhat different from those for the spin glass models.
cannot rule out that some of these differences arise f
finite-size effects which may be significant for the rath
small samples considered in our study. Another possibilit
that these differences arise in our system from the effect
small fluctuations about a local minimum, which are uni
portant in models with infinite-range interactions. A care
investigation of these issues would be very interesting.

A number of numerical studies of ‘‘aging’’ phenomena
the nonequilibrium dynamics of simple model liquids ha
been reported recently@29–31#. In these studies, the syste
is quenched from a relatively high temperature to a temp
ture lower than the numerically determined glass transit
temperature, and is then allowed to evolve at this low te
perature for a certain ‘‘waiting time’’tw . Then, the two-time
correlation functionC(tw ,tw1t) of an appropriate fluctuat
ing quantity is measured and the dependence of this cor
tion function ont and tw is analyzed. The simulations sho
that the decay ofC(tw ,tw1t) as a function oft becomes
slower astw is increased. Our results about the topography
the free energy landscape provide a qualitative explana
of this observation. When the system is rapidly quenched
a low temperature~or compressed to a high density in o
hard-sphere system!, it is likely to get trapped in the basin o
attraction of one of the glassy local minima that are close
phase space to the initial configuration. Such minima wo
not, in general, have the lowest free energies. As the sys
evolves during the waiting timetw , it can be expected to
move progressively to the basins of attraction of minim
with lower free energies because such minima would hav
higher Boltzmann weight. Since the effective barrier heig
is higher for deeper minima~this follows from the ‘‘putting-
green-like’’ structure of the free energy landscape!, the time
scale for subsequent relaxation is expected to increase
increasingtw . This is precisely the behavior found in th
aging simulations mentioned above.

Our study is rather similar in spirit to numerical inves
gations of the ‘‘potential energy landscape’’@23,24,32–36#
of model liquids characterized by simple Hamiltonians.
such studies, a numerical minimization procedure~e.g., the
conjugate gradient method! is used to find the local minima
of the total potential energy of small samples as a function
the coordinates of the particles. The potential energy fu
tion is generally found to exhibit a large number of loc
e
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minima. These local minima and the potential energy ba
ers that separate them define a complex ‘‘potential ene
landscape.’’ Recently, there have been several attempts@34–
36# to relate the properties of this landscape to the dyna
behavior of the liquid. While the similarities between the
investigations and our work are obvious, there are sev
important differences between these two approaches, s
of which we now discuss. A study of the potential ener
landscape is based on a microscopic Hamiltonian define
terms of the coordinates of the particles, whereas our w
involves a model free energy which is a functional of
coarse grained~both in space and time! density field. Infor-
mation about the microscopic interactions is incorporated
our description through the direct pair correlation functi
C(r ) appearing in Eq.~1!. The free energy of a therma
system is, of course, equal to the potential energy at z
temperature. Therefore, the potential energy landscape
such systems becomes identical to the free energy lands
at T50. There are some mean-field spin glass models~e.g.,
the p-spin spherical spin glass@37#! in which the correspon-
dence between the local minima of the energy and the
energy extends also to nonzero temperatures. Such a c
spondence is not likely to be generic, however. A descript
based on the potential energy landscape is certainly ap
priate at low temperatures where entropic effects are r
tively unimportant. But it would, in general, be difficult t
extend such a description to higher temperatures where
tropic effects play a crucial role. In particular, informatio
about the energy landscape alone would not be sufficien
describe the behavior near a phase transition~such as the
melting transition of a solid and the order-disorder transit
in magnetic systems! driven by a competition between ene
getic and entropic effects. In contrast, a description based
a model free energy that includes entropic contributions p
vides a convenient and intuitively appealing starting po
for studying the behavior near such phase transitions.
example, the free energy functional used in our work
known @11# to provide a correct description of the crystal
zation transition of simple liquids. Another well-known ex
ample is the Curie-Weiss theory of magnetism~our approach
is analogous to an inhomogeneous version of the Cu
Weiss theory!. For these reasons, we believe that our fre
energy-based approach is more suitable for a descriptio
the behavior of liquids near the glass transition than
proaches based on the potential energy landscape.

Another important difference between free energy and
tential energy landscapes is that the former changes as
appropriate control parameter~density or temperature! is
changed, whereas the latter, being determined completel
the Hamiltonian of the system, remains unchanged. Spe
cally, some of the local minima of the free energy may a
pear or disappear as the control parameter is varied~for ex-
ample, the inhomogeneous minima of the free energy use
our study disappear at sufficiently high densities!. Also, the
heights of free energy barriers between different lo
minima may change with the control parameter~see, e.g.,
Fig. 7 where the dependence of the height of a typical f
energy barrier on the density is shown!. In contrast, the po-
tential energy landscape does not show any such variatio
the temperature is changed. This difference may be imp
tant in understanding some of the results found in rec
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studies @24,36# based on the energy landscape of sim
model liquids. In Ref.@36#, an approximate description o
the dynamics of a Lennard-Jones system in supercooled
glassy regimes is developed in terms of the numerically
termined properties of the local minima of the potential e
ergy and the energy barriers between them. While this
scription is found to reproduce several interesting feature
glassy dynamics, itdoes notshow the expected faster tha
Arrhenius growth of the viscosity at low temperatures. T
may be due to the energy barriers in this description
changing with temperature. It is possible that a free-ener
based description in which the barrier heights change w
temperature would lead to a faster than Arrhenius growth
the viscosity. This possibility is clearly illustrated in ou
study which shows that the dependence of the heights of
energy barriers on the appropriate control parameter lead
Vogel-Fulcher behavior. Reference@24# describes a numeri
cal study of the local minima and the saddle points of
potential energy surface of small Lennard-Jones clust
One of the quantities calculated in this paper is an ‘‘entro
ratio’’ R that approximately quantifies the entropic effects
the rate of thermally activated transitions between two lo
minima of the potential energy function. Values ofR.1
indicate entropic suppression of the transition rate, wher
R,1 corresponds to an enhancement. The probability oR
having values greater than 1 is found to be small. This re
is interpreted as evidence for entropic effects being relativ
unimportant. In particular, the authors mention that this
servation contradicts our conclusion~described in detail in
Ref. @19# and summarized in Sec. III C above! that the
growth of relaxation times in simple glassy liquids is prim
rily entropic in origin. In our opinion, the results reported
Ref. @24# do not necessarily contradict our conclusion. T
difference between our conclusion and that of Ref.@24#
about the importance of entropic effects is probably jus
reflection of the aforementioned fact that the free ene
landscape changes with the control parameter, but the po
n
st
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tial energy landscape does not. We find in our free-ener
based study that thegrowth of the height of a typical effec-
tive free energybarrier with increasing density is primaril
due to entropic effects arising from an increase in the di
culty of finding low-free-energy paths to other minima. Th
effect is closely related tochangesin the topography of the
free energy landscape as the density is changed. In con
the potential energy landscape studied in Ref.@24# does not
depend on the temperature which is the appropriate con
parameter for the Lennard-Jones system considered ther
particular, the calculated values of the height of the poten
energy barrier between two minima and the entropic factoR
do not change as the temperature is changed. Theref
there is no direct connection between our results~which, as
explained above, are about thechangesof these quantities as
the appropriate control parameter is changed! and those re-
ported in Ref.@24#.

We end with a word of caution. Because of the compu
tional complexity of numerical studies of free energy a
potential energy landscapes, such studies have been
stricted to rather small samples which may exhibit finite-s
effects. In our work, we found that certain features of t
free energy landscape are quite sensitive to the comme
rability properties of the discretization scale and the sam
size. Strong dependences on the sample size and the bo
ary condition have also been found@23,24# in studies of the
potential energy landscape. One should, therefore, be ca
in extrapolating the results obtained from such studies to
thermodynamic limit.
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